Math Logic: Model Theory & Computability Lecture 30

We could directly apply Control diagonalization to a parametrization of a class
of functions on IN^k because we need the set of codes to be the same as the
set of inputs, i.e. we need IN=IN^k, so k=1. But we can encode IN^k into IN:
Def. Let
$$\Gamma = \bigcup_{k=0}^{W} \Gamma(N^k)$$
, where $\Gamma(N^k)$ is a days of subsets of IN^k. A parametrization for Γ is
a subset $P \le N \times IN$ such that for each kell and $R \in \Gamma(N^k)$ there is $C \in IN$
such the for all $\vec{a} \in IN^k$,
 $R(\vec{a})$ if $f = P_c(<\vec{a} >)$.
Similarly, for $\Delta := \bigcup_{k=0}^{W} \Delta(N^k)$, where $\Delta(IN^k)$ is a class of functions $M^k \rightarrow N$, a parametriz-
tation for Δ is a function $F: IN \times IN \rightarrow IN$ such that for each kell $\vec{a} \in IN^k$,
 $f(\vec{a}^2) = F_c(<\vec{a} >)$.

Cor. The class of computable (resp. primitive recursive) functions / relations closs not admit a parameterization that is in the same day. Proof let I be the class of wapetable subsets of powers of W and let Ps IN × IN be a parameterization for it. Suppose P is itally competently. Mun Antipiany = { u EIN : - P(u,cos) } is also compatible because i is closed mucher complements. Let CEN be such that the all a EIN, Antipiany (a) iff Pe (cas). But then Antipiany (c) iff Pe (ccs) iff P(c, ccs) iff - Antiping (c). The poor for functions is similar and uses that the inverse bit function is computable. The proofs are identical for primitive neursive.

However:

Prop. Thre is a computable parancherization for the days of primitive recursive functions relations, last. It is enough to prove for fourtions since if F: IN a IN is a competable parameterization for prim rec. Functions, they bit of is the indicator function of a computable parameterischier for prin. acc. relations, To each prim. rec. f: NK-> W we associate a code (FEIN defining of by induction on the definition of f. Case 1: + is a basic function in (PRI). Then put cf:= <1, k, m7, chene k is the arity of f and - m= 0 if f= 5 the successor function. - m = 2(iti) it f = Ck in the wastant i function - m= 2i+1 if f= Pi is the projection outs the it workingte. $\frac{(\omega e 2: f is obtained by composition (PR2) from g: N^{R} \rightarrow IN and fig..., fe: IN K \rightarrow IN.$ Then put $C_{F} := \langle 2, k, \langle C_{g}, C_{F_{1},...,} C_{f_{e}} \rangle$ $\frac{(are 3: f is obtained by prim. rec. (PR3) from g: N^k \rightarrow N and h: M^{k+2} \rightarrow W.$ Then put $c_{F} := < 3$, k+1, c_{G} , $c_{h} \rightarrow >$. $Define F: |N \times |N \rightarrow |N as follows F(c, a) := f(a)_{a}, (a)_{a}, \dots, (a)_{a-1}$ if c = cf for none prin. nc. f: INK-> IN, and f(c, a) = 0, otherwise. It is clear Md F is a parameterization for the days of prim. nec. tackions, and proving that F is computable is done through Dedekind analysis of prin. recursion, searching for a computation-certificate for fllalo, (a), ..., (a) ..., (b) ..., (b a sequence (2cf., a, bi7, ..., ccf., an, bu7), due fi,..., for we the functions that

appear in the det. of f, a; is the code of the input for f; al bis is the value of f; on this input. We leave the details as a (difficult) correcte. The computable parameterization de the day of prim. rec. Functions is an example of a computable but not primitive nec. Function. Another, more natural example is: Ackermann tunction. Let ζ_{lex} be the hericographic ordering of $|V^2$, i.e. \vdots \vdots \vdots $(x_1, y_1) < \xi_{lex}$ (x_2, y_2) $: \langle z \rangle < 1$ $|\zeta_{lex}| < \xi_{lex}| \cdots$ $(x_1 = x_2 \text{ and } y_1 < y_2).$ x_{20} x_{21} x_{22} This is a well-ordering so we can define a function A: IN? >> W by induction on (N?, <eex) as follows: $\begin{pmatrix} A(0, y) = y + 1 \\ A(x+1, 0) = A(x, 1) \\ A(x+1, y+1) = A(x, A(x+1, y)) \end{pmatrix}$ $\frac{P_{cop}}{A(x_{f}, g)} > f(g).$ Here is $x_{f} \in \mathbb{N}$ such that for all $y \in \mathbb{N}$. Proof. By induction on the construction of f, using inequalities for A. Loc. A is not prime cec. Proof. Althurisc A': IN is IN by A His A (4,4) is prime rec. so I xo EIN with A (xo, y) > A'(y) Gr all yEIN contradictions A (xo, xo) = A (xo).

Acillametical hierarchy and undecidability. In this last action, we assure the following sweetions: (R1) Computable who/functions are arithmetical, is the converse true? If not, how much more complicated arithmetical sets can get? Can we stratify the class of arith-metical sets into a hierarchy of classes of simpler sets, starting with computable set? competable subs? (Q2) Okay, PA is incomplete, and even ZF(is incomplete (follows from a gene-rationation of Gödel's incompleteness Measure), but maybe the set of theorems of these twories is computer-recognizable? More pacinly, given a co-putable theory T that's mich enough (like PA of ZFC), is the set (Thrn (T) = { (47 : 46 Thm (T)) = { [47 : l'is provable from T } computable? It that the answers to (Q1) and (Q2) are Yes and No, respectively. We discuss the asswers without going much into proofs. <u>Si</u> sets and a eithmetical hierarchy. We saw that every computable set is of the form $\exists y R(\vec{x}, y)$ there R is primitive recursive. Is any set of this, form compute-ble? Let's first define this class of sets. Notation. let I be a class of inbuchs of finide powers of W. Denote $\exists^{\mathbb{N}} \Gamma := \{ \exists_{\mathcal{Y}} S(\vec{x}, y) : S \in \Gamma \}, \quad \forall^{\mathbb{N}} \Gamma := \{ \forall_{\mathcal{Y}} S(\vec{x}, y) : S \in \Gamma \},$ $\neg \Gamma := \{\neg S(z) : S \in \Gamma \}.$ let A, C, R double the classes of withmetical, computable and primeric. sets, resp.

Minippe Ut
$$\mathbb{Z}_{1}^{n} := \mathbb{J}^{N} \mathbb{C}$$
 and supposing that \mathbb{Z}_{n}^{n} is discil, we define
 $\mathrm{T}_{n}^{n} := -\mathbb{Z}_{n}^{n}$
 $\mathbb{Z}_{n+1}^{n} := \mathbb{J}^{N} \mathrm{T}_{n}^{n}$.
News, $\mathrm{T}_{1}^{n} = \mathrm{V}^{N} \mathbb{C}$, $\mathbb{S}_{1}^{n} = \mathbb{J}^{N} \mathrm{V}^{N} \mathbb{C}$, $\mathrm{T}_{2}^{n} = \mathrm{J}^{N} \mathrm{V}^{N} \mathbb{J}^{N} \mathbb{C}$, $\mathbb{Z}_{3}^{n} = \mathbb{J}^{N} \mathrm{V}^{N} \mathbb{J}^{N} \mathbb{C}$, ...
 $\mathbb{Z}_{n}^{n} = \mathbb{J}^{N} \mathrm{V}^{N} \mathbb{J}^{N} \mathbb{C}$, $\mathbb{Z}_{3}^{n} = \mathbb{J}^{N} \mathrm{V}^{N} \mathbb{J}^{N} \mathbb{C}$, ...
 $\mathbb{Z}_{n}^{n} = \mathbb{J}^{N} \mathrm{V}^{N} \mathbb{J}^{N} \mathbb{C}$, $\mathbb{Z}_{3}^{n} = \mathbb{J}^{N} \mathrm{V}^{N} \mathbb{J}^{N} \mathbb{C}$, ...
 $\mathbb{T}_{n}^{n} = \mathbb{V}^{N} \mathbb{J}^{N} \mathbb{J}^{N} \mathbb{C}$, $\mathbb{Z}_{3}^{n} = \mathbb{J}^{N} \mathrm{V}^{N} \mathbb{J}^{N} \mathbb{C}$, ...
 $\mathbb{I}_{n}^{n} = \mathbb{V}^{N} \mathbb{J}^{N} \mathbb{J}^{N} \mathbb{C}$, $\mathbb{Z}_{3}^{n} = \mathbb{J}^{N} \mathrm{V}^{N} \mathbb{J}^{N} \mathbb{C}$, $\mathbb{Z}_{3}^{n} = \mathbb{J}^{N} \mathbb{J}^{N} \mathbb{J}^{N} \mathbb{C}$, ...
 $\mathbb{I}_{n}^{n} = \mathbb{V}^{N} \mathbb{J}^{N} \mathbb{J}^{N} \mathbb{Z}^{n}$, \mathbb{E} .
 $\mathbb{I}_{n}^{n} = \mathbb{V}^{N} \mathbb{J}^{N} \mathbb{J}^{N} \mathbb{Z}^{n}$, \mathbb{E} .
 $\mathbb{I}_{n}^{n} = \mathbb{V}^{N} \mathbb{J}^{N} \mathbb{J}^{N} \mathbb{I}^{n}$, \mathbb{E} .
 $\mathbb{I}_{n}^{n} \mathbb{I}^{n} \mathbb{I}^{n} \mathbb{I}^{n} \mathbb{I}^{n} \mathbb{I}^{n} \mathbb{I}^{n} \mathbb{I}^{n} \mathbb{I}^{n}$, $\mathbb{I}^{n} \mathbb{I}^{n} \mathbb{I}^{n} \mathbb{I}^{n} \mathbb{I}^{n} \mathbb{I}^{n}$.
 $\mathbb{I}_{n}^{n} \mathbb{I}^{n} \mathbb{$

Theorem is to be
$$\Sigma_{n}^{o}$$
 or Π_{n}^{o} be seen ust. Then Γ admits a universal set,
i.e. a parameterisation USNMU of Γ with UEP, i.e. for each kert and
 $S \in \Gamma(N^{1})$ have in c GIN such that for all $\overline{c} \in N^{L}$
 $S(\overline{c}) := U_{c}(\overline{c} \geq)$.
Find IP U is a universal at for Σ_{n}^{o} , from U^{c} is a universal vel for $-\Sigma_{n}^{o} \equiv$
 Π_{n}^{o} . Similarly, if U is a universal set for Π_{n}^{o} , then
 $U^{c}(c, x) := S = U^{c}(c, x < c_{1}^{o})$.
For Σ_{n}^{o} , Ut P be a compatible parameterization of prime rec. Lets and
get $U(c, x) := S = Y P(c, x < c_{2}^{o})$.
Confiel The aithmetical hierarchy is strict, i.e. $\Lambda_{n}^{o} \notin \Sigma_{n}^{o} \lesssim \Lambda_{n}^{o}$ for all net
In particular, $\Sigma_{n} \notin \Pi_{n}^{o}$.
Confiel The aithmetical hierarchy is strict, i.e. $\Lambda_{n}^{o} \notin \Sigma_{n}^{o} \lesssim \Lambda_{n}^{o}$ for all net
In particular, $\Sigma_{n}^{o} \notin \Pi_{n}^{o}$.
Confiel The aithmetical hierarchy is strict, i.e. $\Lambda_{n}^{o} \notin \Sigma_{n}^{o} \lesssim \Lambda_{n}^{o}$ for all net
In particular, $\Sigma_{n}^{o} \notin \Pi_{n}^{o}$.
Confiel The aithmetical hierarchy is strict, i.e. $\Lambda_{n}^{o} \notin \Sigma_{n}^{o} \lesssim \Lambda_{n}^{o}$ for all net
In particular, $\Sigma_{n}^{o} \notin \Pi_{n}^{o}$.
(b) Λ_{n}^{o} does not admit a universal set.
Confiel The aithmetical hierarchy is strict.
Confiel The aithmetical string is universal set.
Confiel The aithmetical set on particular.
Confiel Theorem $\mathbb{C} = \Lambda_{n}^{o}$, i.e. if a suf $S \in \mathbb{N}^{k}$ and if unphased S
one bith Σ_{n}^{o} , then S is unputable.
Proof. Should here a mitters for S and S^{c} of the same time, and you're should
degle be field if. Moree precisely, let $S(\tilde{x}) :=S \exists w B(\tilde{x}, w)$, where $A, B \le \mathbb{N}^{k+1}$
S is compatible.
Then $S(\tilde{x}) :=S \land [\tilde{x}, J_{m}^{o}(A(\tilde{x}, w) \lor B(\tilde{x}, w)])$ and the second the is safe so
 S is compatible.

Thus, we have proven the fillering picture:
Theorem:

$$T = \Delta_{1}^{o} \leq \sum_{i=1}^{o} \leq \Delta_{1}^{o} \leq \sum_{i=1}^{o} \leq \sum$$