
Math Logic: Model Theory & Computability
Lecture 30

We can't directly apply Cantor diagonalization to a parameterization of a class
of functions on NNK because we need the set of codes to be the same as the

set of inputs ,
i

.
e

. we need IN = INK
,
10k = 1

.
But we can encode NK into IN :

IN

Def
.

Let 5 = UPIN")
,

where MG) is a clare of subsets of IN? A parameterization for T is
k=0

a subset PCNXIN such that for each KEIN and REMING There is CIN

such It for all EINK,
R(a) iff P. Ks) .

&

Similarly ,
for A := VAINA

,
where AlNG) is a class of functions IN"-> N

,
a parameteria

k= 0

zation for A is a function F : /NXIN-IN such that for each be and

feA(IH)
,
there is cEIN such that for all EING,

f(at) = F
,
(a))

.

Canber diagonalization now gives:

Lor
. The class of computable leap , primitive recursivel functions/relations does not
admit a parameterization that is in the same can

Proof
.

Let I be the clam of computable subsets of powers af IN and let
PINXIN be a parameterization for it. Suppose P is itself computable .

Then Artifiay
,
:\uEN : - Plusus]] is also computable because ↑ is closed

under complements .

Let CEN be ch that for all acIN,

Antibicy p
(a) iff Pckay)

.

But then AntiWingp(c) iff Pols) iff P(c , <) iff -AntiDing (2).
The proof for functions in similar and uses that the inverse-bit function is

↳ iputable .

The proofs we identical for primitive necessive
.



However :

Prop .

There is a computable parameterization for the lam of primitive recursive
functions/relations

,

Proof
. It is enough to prove for functions since if F : /NIN-IN is a coupe-

table parameterization for prim.es .

Functions
,
then bit of in the indicatio

function of a computable parameterization for prim.es. relations,
To each prim . rec.

f : Nh-N we associate a mode (EN defining of by
induction on the definities of f.

Case 1 : t is a basic function in (PRI) .

Then put 2 :=< 1
,
k

,
my

,
where h is

the ariby off and
m = 0 if f = S the successor function.
m = 2(i+1) if f = 2" is the constant i function

m = 2i + 1 if f = Ph is the projection oho the it coordinate.

Case 2 : f is obtained b composition (PRC) from g : /Ne-IN and Ey . . .,
fe : /N"->IN

.

Then put ( := < 2
,

K
,

< I g , ( , .. .,

Case 3 : f is obtained by prim . rec .
(PR3) from g

: /N" -> IN and h : /N*
-> IN.

The put 25 :=< 3
,
k+ t

, <g , 7).

Define F : /NXIN -> IN as follows Flc
,
a) : = F(10

,
la, ..., Kain

if c = 2 for come prim . rec .
F:Nk-I

,
and fla

,
al:-0

,
otherwise.

It is clear let F is a parameterization for the clays of prim.res · functions,
and

proving let F is computable is done through Dedekind analysis of prin
recursion

, searching for a computation-certificate for Ellalo
,
lat , ...,

late)
,

i
.

e
.

a sequence 190,
,

&
,,

b
i 7, . .

., 14fr) An ,
bes)

,
cher f ,

...,
fe are the functions that



appear in the def of f
,
ai in the code of the input forfo all be is the

value of fr on this input .

We leave the details as a difficult) exercise.

The computable parameterization for the cla of prin .
rec · functions in an example

of a computable butwote primitive mes function
. Another

,
more natural

example is :

Ackermann function
.
Let hey be the lexicographic ordering of IN ,

i. e.

: : (x
1, 4 ,) <ax(x2 , (2) : <=) X, X2 or

Car Lex - (x ,
= Xz and y

,
<2) .

X = 0 x= ) X= 2

This is a well-ordering so we can define a function A : /N->N

I as follows :by induction or (N2
, Lee

A(0
, y) = y + 1 &

⑨&A(x+ 1
, 0) = A(x

,
1)

⑨

Tv
--

·

A(x+ )
, y + 1) = A(X

,
A(x + 1

, 3) T
~

⑨

X = 0 X= 1

Prop . For each prim . rec
.

F : N->I
,
Rare is XXEIN such that for all ye N

Alxr
,
y) > fly) .

Proof
. By induction on the constration off

, using inequalities for A.

Lor. A is not prim . Mc .

Proof
. Otherwise A : /N-I by ni> Almu) is prin . res

.
so EXOEIN

with Alo
, y1< Aly) for all yEIN contradicting Also

,
40) = Akol

·



Arithmetical hierarchy and undecidability.

In this last rection
,

we answer the following questions :

1Q1) Computable whe/functions are arithmetical
,
is the converse true ? If not

,
how much

more complicated withmetical whe can get ? Can we strality te class of with-

medical are into a hierarchy of classes of simpler sets
, starting with

computable sets?

192) Okay ,
PA is incomplete ,

and even EF) is incomplete (follows from a gene-
valization of God's incompletenen theorem)

,
but maybe the set of theorems

of buse mories is computer-recognizable ? More precisely , given a computable
theory T that's rich enough (like BA or EFC)

,
is the set

The /T := 7147 : 4.The(i))
= ly2 : Y is provable fromTh

computable ?

It turns and that te answers to 1Q1) and 1Q2) are Yes and No
, respectively.

We discuss the answers without going much into proofs.

Zi sele and arithmetical hierarchy. We can that every computable set is of the

form FyR(*, 3) where R is primitive recursive . Is any
set of this form computer

ble? Let's first define this class of sele

Notation
.

Let i be a class of subsets of finite powers of IN. Denote

Imp = = 47yS( , 3) : Ser)
,
VN4 = (FySE, 3) : SerS

,

-( : = 72S( *) : Ser] ·
let A

,
T

,
R danote the clamen of withmetical

, computable and prim.

Mc
.
sets

, resp



Definities .
Let I := JNC and supposing that I in defined

,
we define

#in = [

Zi=H:
i := 2 : 1 ii

Mu
,
MY = N2

,
zi = N ** 2

,
i ? = N]* e

,
zi = J***I

*
C, ...

: = I
...

,

T = VINzI
...
e

.

-
u

Prop . (a)
2 o

Zie
A
Zi

-- 10
+Zo

Ante
O O

Hi To
"

u?? --

&b) A : Zi = :
=

A

Propf
. (a) is straightforward and 16) follows from the fact that every

extended

Tarthen-formula Y(*) is equivalent (in all Tarther-structures) to an

extended Takm-formula of the form Jy , EscJy
,
... 4/*, 3

, 1421/ Yah ,

where Y is quantifies free
,
and here-some h

defines a prim.rec
.

Set

Prop . Zi := zNZ = -R
.
Thus

,
in the above definition

,

I can be replaced with R.

Proof
.

Become R2Z
,

we have F
*BEIC

,
so it remains be show the converse.

By the normal form therem
,

2 = FNR
,

so B2CININR
.

But we can

won ind ↓wo JV into one : Fy 5 xR(a
,

X
,3) ) Ez R ,

10
,
(21 , ) , sob

JNy = ](y* R = 5 R
.



Theorem
. Let" be In or In for come uil

.

Then I admits a universal set,
i

. e . a parameterization U : NNXI of I with UET
ga

i. e. for each kil and

JENCIN") Were is <IN and that for all EINK

~ (i) > U
,
(s)

.

Proof
.

IfIt is
a universal of for Z

,
then

C
is a universal ret for -Z =

Tin
. Similarly ,

ifU is a universal set for The
,
then

Uk
,
x) : > Jy Uk, )

"(a
, 37 where (a) =x

is a universal set for INT = Zin+.

For EP
, letP be a computable parameterization of prim . rec

.

Lets and

out U(
,
x) = c => JyP( , x*xys) .

Cor
. (a) The withmetical hierarchy in strict

,
i . s. free

In particular ,
ZiIi.

16) At does not admit a universal st.

Proof . In) follows from 19)
,
and 181 Allows by Cantor diagonalization because

Air in dosed under completement.

Kleene's Theorem
.

2 = Ai
,

i . e
.

if a set SEIN" and its complement s
are both I

,
then S is computable.

Proof
.

Search for a wither for s and s at the same time
,
and you're guarant

Leed to find it. More precisely ,
let S(Y ) : ZwAk

,
w

I
where A

,
B: /NkH

5 (5) : JwB(
,
2) are computable.

Then Sit Al
, M/Alm) V Blin))) and the search for is safe so

S is computable.



The
,

we have proven the following picture :

Theorem
.

2 = 194Zizix -- 10
Zo

Ant
&

G
↑

E &

:
" -

Arithmetical cets

Undesirable theories.

Prop ,
leto be a finite signature andT be a 5.throy .

If T is computable
li

. e .
The set 'The IN of codes is computable) then Proof -> IN2 is computable,

where
Proof (x

, y) : > X is a code of a proof from t of the formula

encoded by y

( x = ji, ..., en> where 'Yo = y
and 14

,...,
41)

is a proof of Yu from
T

.

In particular ,
Medit is I li

.
e

.
"Tholi - I is I.

Proof
.

That Propfl , y) is computable we're already chance
,
and

7
I

y Thmp(i) <=> Provable
, (y) : it Ex Proof (x

, 4) .

Def
.

Leta be a finite signature .

Call a rathery T decidable if tholt) is

computable.

Cor from Kleene's theorem) .
If a computable +-these is complete. then it is deci-
dable

.



Proof. We only need towhom that Provable
+
IN in also It

,
but it is

because for each sentence V
,
either Provable

,
147) or Provable

+ 142) , here
Provable

+ (s) 2 - Provable (codel+) & y).

Therefore
,

the following theorem of Church vastly strengthens and generalizes
Godel's incompleteren theorem :

Church's Undecidability Theorem .

LetThe a finite signature. Every 5-theory T
that computably interprets PA is undecidable· E .g .

PA
,
EFC are undecidable·

Gore's In completene Theorem (Rosser's form)
. Every computable +-theory that

computately interprets PA is incomplete Eg .
PA

, PAUSTGEAS ,
EFC

are in comp
lete

Bef .
Let5

, in be finite signatures and is be a 2-theory ,
i : 1

,
2.

A function it : Formulas() -> Formulas (52) is called an interpretation
of T

, ini2 if for all 4
,
40 Sentences (5),

(i) T, FY = T
, FY

(ii) T2 F TTI-4) - Title

(iii) Tn E IT (414) < /(4) 1iT(41)
·

We say that in computably interprets I, if there is a computable inter-
-pretation it : Formulas (i) -> Formulas (5)

,

i

. e. Whe function

# : IN -> IN

n ↳ (e if n = '
" for some YE Formulas (i)[ P 0

.

W
,

is computable.

Example .
ZFC computably interprets PA.


