Math Logic: Model Theory \& Computability
Lecture 30

We cant directly apph Conte diagoualization to a paramaterization of a doss of functions on \mathbb{N}^{k} because we need the set of coles to be the same as the set of inputs, i.e. we need $\mathbb{N}=\mathbb{N}^{k}$, ,o $k=1$. But we can encode \mathbb{N}^{k} into \mathbb{N} :

Def. Let $\Gamma=\bigcup_{k=0}^{N} \Gamma\left(\mathbb{N}^{k}\right)$, whee $\Gamma\left(\mathbb{N}^{k}\right)$ is a dan of subsets of \mathbb{N}^{k}. A paraneterization for Γ is a subset $P \subseteq \mathbb{N} \times \mathbb{N}$, inch that for each $k \in \mathbb{N}$ and $R \in \Gamma\left(\mathbb{N}^{(k)}\right.$ there is $c \in \mathbb{N}$ such the for all $\vec{a} \in \mathbb{N}^{k}$,
$R(\vec{a})$ iff $P_{c}(\langle\vec{a}\rangle)$.
Similarly, for $\Delta:=\bigcup_{k=0}^{\infty} \Delta\left(\mathbb{N}^{k}\right)$, where $\Delta\left(\mathbb{N}^{k}\right)$ is a class of fuchtrons $\mathbb{N}^{k} \rightarrow \mathbb{N}$, a paraceteriration for \triangle is a faction $F: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ sch that for each $k \in \mathbb{N}$ and $f \in \Delta\left(\mathbb{N}^{k}\right)$, there is $c \in \mathbb{N}$ such that for all $\vec{a} \in \mathbb{N}^{k}$,

$$
f(\vec{a})=F_{c}(\langle\vec{a}\rangle) .
$$

Cantor diayonalization now gives:
Cor. The class of computable (resp. primitive necarsine) functiocs/relations clos not admit a parametrization that is in the same dan.
Pool. Let r be the clan of coapatable scbects of powers of \mathbb{N} and let $P \subseteq \mathbb{N} \times \mathbb{N}$ be a parametrization for it. Suppose P is itulf wonpatable. Then Aationiang : $=\{n \in \mathbb{N}: \neg P(n,(n))\}$ is also wo-patathle beanse r is closed uncles complements. Let $c \in \mathbb{N}$ be inch that fo, all $a \in \mathbb{N}$,

AatiDicg (a) if $P_{c}(\langle a\rangle)$.
Bat then AntiNing (c) if $P_{c}(\langle c\rangle)$ iff $P(c,\langle c\rangle)$ iff \rightarrow AntiDing (c). The proof for functions is simitar and uses the the ivverse-bit faction is separable. The proofs are ibleatial for primitive recursive.

However:

Prop. There is a computable paranuterization for the dan of primitive recursive function / relations.
Prod. If is enough to prove for factions since if $F: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is a copetable paraneterization for prim. aec. Fnactiens, then bit of is the indicator function of a computable parametrization for prim. ne. relations,
To each prim. rec. $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ we associate a code $C_{f} \in \mathbb{N}$ defining of bs induction on the deteritier of f :

Case 1: t is a basic taction ir (PRI). Then pat $c_{f}:=\langle 1, k, m\rangle$, here k is the arith of f and

- $m=0$ if $f=S$ the raceessor function.
$-m=2(i+1)$ if $f=C_{i}^{k}$ is the uastant inunction
- $m=2 i+1$ if $f=P_{i}^{k}$ is the projection otto the th corchinafe.

Case 2: f is obtained bs opposition (PR2) from $g: \mathbb{N}^{l} \rightarrow \mathbb{N}$ and $f_{1}, \ldots, f_{l}: \mathbb{N}^{k} \rightarrow \mathbb{N}$. Then put $c_{f}:=\left\langle 2, k,\left\langle c_{g}, c_{f}, \ldots, c_{f}\right\rangle\right\rangle$.

Case 3: f is obtained by prim. rec. $(P R 3)$ from $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $h: \mathbb{N}^{k+2} \rightarrow W$. Then pat $c_{F}:=\left\langle 3, k+1,\left\langle c_{g}, c_{h}\right\rangle\right\rangle$.

Define $F: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ as follows $F(c, a):=f\left((a)_{0},(a)_{1}, \ldots,(a)_{k-1}\right)$
if $c=c_{f}$ for rowe priv. aec. $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$, and $f(c, a)=0$, otherwise.
It is clear ht F is a paraneterizction for the class of prim. rec. faction, and proving the F in comparable is done through Dedekind analysis of prim. recursion, searching for a woupatation-certificale for $f\left((a)_{0},(a)_{1}, \ldots,(a)_{k-1}\right)$, ie. a sequence $\left(\left\langle c_{f_{1}}, a_{1}, b_{1}\right\rangle, \ldots,\left\langle c_{f_{n}}, a_{n}, b_{n}\right\rangle\right)$, dene f_{1}, \ldots, f_{n} are the functions that
appease in the def. of f, a_{i} is the code of the ign for f_{i} al b_{i} is the value of f_{i} on this in pat. We leave the details as a (difficult) ceeccise.

The computable paraneterization to the dem of pin. rec. functions is an exayple of a computable lat not primitive rec. Function. Another, more natural example is:

Ackermannfunction. Let $L_{\text {lex }}$ be the lexicographic ordering of \mathbb{N}^{2}, ie.

This is a aell-ordecing so we can define a function $A: \mathbb{N}^{2} \rightarrow \mathbb{U}$ by induction on $\left(\mathbb{N}^{2},<_{\text {tex }}\right)$ as follows:

$$
\left\{\begin{array}{l}
A(0, y)=y+1 \\
A(x+1,0)=A(x, 1) \\
A(x+1, y+1)=A(x, A(x+1, y))
\end{array}\right.
$$

Prop. For catch prim. rec. $f: \mathbb{N} \rightarrow \mathbb{N}$, there is $x_{f} \in \mathbb{N}$ such that for all $y \in \mathbb{N}$

$$
A\left(x_{f}, y\right)>f(y)
$$

Proof. By induction on the comstration of f, wis y inequalities for A.
bor. A is not prim. rec.
Proof. Otherwise $A^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ by $n \mapsto A(n, y)$ is prim. rec. so $\exists x_{0} \in \mathbb{N}$ with $A\left(x_{0}, y\right)>A^{\prime}(y)$ for all $y \in \mathbb{N}$ contradicting $A\left(x_{0}, x_{0}\right)=A^{\prime}\left(x_{0}\right)$.

Acilluetical hierarchy and undecidability.
In has lat action, we answer the following questions:
(QI) Computable ins/Puctione are arithenctical, is the coverese true? If not, how much more complicated arithmetical uts can get? Can we stratify the class of arithmetical sate into a hiecaccly of cases of simpler sets, starting with computable sets?
(Q2) Okay, PA is inconglete, and even $Z F C$ is incomplete (follows from a geeralization of Godelts incopplitiven theorem), bat maybe the set of theremens of thess Hurries is conpater-recognizable? More paciely, given a co-putable theory T that') rich enough (like PA of $Z+C$), is the set

$$
\begin{aligned}
‘ T h m & (T)^{\prime}
\end{aligned}:=\left\{\left\{^{\top} \varphi: \varphi \in \operatorname{Thm}(T)\right\}\right\}
$$

computable?
It tusche out that the answers to $\left(Q_{1}\right)$ aud $\left(Q_{2}\right)$ ane Yes and N_{0}, respectively. we discuss the answers without going much into proofs.
Σ_{1}^{0} sets and arithmetical hiecacchy: we san Rat every computable set is of the form $\exists y R(\vec{x}, y)$ here R ir primitive recursive. Is an g set of thai form connatebe? Ut's fiat eloise this class of els.

Notation. le Γ be a class of subsets of finite powers of N. Denote

$$
\begin{aligned}
& \exists^{\mathbb{N} \Gamma}:=\{\exists y S(\vec{x}, s): S \in \Gamma\}, \quad \forall^{\mathbb{N} \Gamma} \Gamma=\{\forall y S(\vec{x}, S): S \in \Gamma\}, \\
& \neg \Gamma:=\{\neg S(\vec{x}): S \in \Gamma\} .
\end{aligned}
$$

Let A, C, Q dante the ides of arithmetical, computable and prim. Me. sets, resp.

Definition Let $\Sigma_{1}^{0}:=\exists^{N N} C$ and supposing that Σ_{n}^{0} is defined, we define

$$
\begin{aligned}
& \pi_{n}^{0}:=\neg \sum_{n}^{0} \\
& \sum_{n+1}^{0}:=\exists^{N} \Pi_{n}^{0} .
\end{aligned}
$$

Thus, $\Pi_{1}^{0}=\forall^{N} e, \sum_{2}^{0}=\exists^{N} \forall^{\mathbb{N}} e, \Pi_{2}^{0}=\forall^{\mathbb{N}} \exists^{N} e, \sum_{3}^{0}=\exists^{\mathbb{N}} \forall^{N} \exists^{N} e, \ldots$

$$
\begin{aligned}
& \Sigma_{n}^{0}=\underbrace{\exists^{N} \forall^{N} \exists^{N} \ldots}_{n} e, \\
& \pi_{n}^{0}=\underbrace{\forall^{\mathbb{N}} \exists^{N} \forall^{\mathbb{N}} \ldots}_{n} e .
\end{aligned}
$$

Prop. (a)
(b) $\quad A=\bigcup_{n=1}^{\infty} \sum_{n}^{0}=\bigcup_{n=1}^{\infty} \Pi_{n}^{0}=\bigcup_{n=1}^{\infty} \Delta_{n}^{0}$.

Prot. (a) is straightforward and (b) follows tron the fact that every extended $\sigma_{\text {arthen-formula }} \varphi(\vec{x})$ is equivalent (in all $\sigma_{a r t h e}$-structures) to an extended $\sigma_{a t h}$-formula of the form $\underbrace{\exists y_{1} \forall y_{1}, \exists y, \ldots} \psi\left(\vec{x}, y_{1}, y_{2}, \ldots, y_{n}\right)$, where ψ is quantifier free, and hose defines a prim. rec. set.

Prop. $\sum_{1}^{0}:=\exists^{N} C=\exists^{N} R$. Thus, in the above defitinition, C canc be replaced with R.
Proof. Beaned $R \leq \mathcal{C}$, we have $\exists^{N} R \subseteq \exists^{(N)} C$, so it remains to show the converse. B) the normal form theorem, $C \leq \exists^{\mathbb{N}} Q$, so $\exists^{N N} C \subseteq \exists^{N} \exists^{N N} R$. But we can combine the $\exists^{\mathbb{N}}$ into one: $\exists y \exists \times R(\vec{a}, x, y) \Leftrightarrow \exists z R(\vec{a},(z),(z)$,$) , so$ $\exists^{\mathbb{N}} C \subseteq \exists^{\mathbb{N}} \exists^{\mathbb{N}} R=\exists^{\mathbb{N} R} R$.

Theorem. let Γ be \sum_{n}^{0} or Π_{n}^{0} for some $n \geqslant 1$. Then Γ admits a universal set, i.e. a parametrization $U \leq \mathbb{N} \times \mathbb{N}$ of Γ with $U \in \Gamma$, i.e. for each $k \geqslant 1$ ard $S \in \Gamma\left(\mathbb{N}^{k}\right)$ there is $c \in \mathbb{N}$ such that for all $\vec{a} \in \mathbb{N}^{k}$

$$
s(\vec{a}) \Leftrightarrow U_{c}(\langle\vec{a}\rangle) .
$$

Proof. If U is a universal if for \sum_{n}^{0}, then U^{c} is a unisrral set for $-\sum_{n}^{0}=$ Π_{n}^{0}. Similarly, it U is a universal set for Π_{n}^{0}, then

$$
U^{\prime}(c, x): \Leftrightarrow \exists y U(c, \underbrace{x *\langle y\rangle}_{\|\langle\vec{a}, y\rangle}) \text { then }\langle\vec{a}\rangle=x
$$

is a universal set for $\exists^{N} \pi_{n}^{0}=\sum_{n+1}^{0}$.
For Σ_{1}^{0}, let P be a computable parametrization of prim. rec. sets and put $U(c, x): L \exists y P(c, x *\langle y\rangle)$.

Cor. (a) The withuetical hiernchy is strict, ie. $\Delta_{n}^{0} \subseteq \sum_{n}^{0}{ }_{x}^{c} \prod_{n}^{0} \cup_{\pi}^{0} \Delta_{n+1}^{0}$ for all $n \geqslant 1$.
\quad In particular, $\sum_{n}^{0} \neq \prod_{n}^{0}$. In particular, $\sum_{n}^{0} \neq \Pi_{n}^{0}$.
(b) Ain docs not admit a miversal set.

Proof. (a) follows com (b), and (b) follows b, candor diagonalization become In is closed under complement.

Klee's Theorem. $e=\Delta_{1}^{0}$, i.e. if a set $S \subseteq \mathbb{N}^{k}$ and its waplerent S^{\prime} are b. th Σ_{1}^{0}, then S is computable.

Proof. Search fac a vituen for S and S^{c} at the sane fine, and yon're guaranideed to find it. More precisely, let $S(\vec{x}): \Leftrightarrow \exists w A(\vec{x}, w)$, here $A, B \leq \mathbb{N}^{k+1}$ $S^{L}(\vec{x}): \Leftrightarrow \exists w B(\vec{x}, w)$ are computable.
Then $S(\vec{x}) \Leftrightarrow A\left(\vec{x}, \mu_{w}(A(\vec{x}, w) \vee B(\vec{x}, w))\right)$ and the search j_{w} is sate so S is computable.

Thus, we have proven the following picture:
Theorem.

Arithmetical sets

Undecidable theories.
Prop, let σ be a finite siguatire and T be a σ. theory. If T is wopatable (ie. The set ${ }^{\top} T \backslash \subseteq \mathbb{N}$ of coles is comparable) then $P_{r o o f} \subseteq \subseteq \mathbb{N}^{2}$ is coupectalle, here

Proof $(x, y): \Leftrightarrow x$ is a code of a proof from T of the formals encoded by y

$$
\Leftrightarrow x=\left\langle\varphi_{1}, \ldots,{ }^{r} \varphi_{n}^{7}\right\rangle \text { where }{ }^{r} \varphi_{n}^{\top}=y \text { and }\left(\varphi_{1}, \ldots, \varphi_{n}\right)
$$

is a proof of φ_{a} from T.
In particular, Then (T) is \sum_{1}^{0} (ie. ${ }^{0} T h_{0}(T)^{\top} \subseteq \mathbb{N}$ is $\left.\sum_{i}^{0}\right)$.
Proof. That Proof (x, y) is counpatable, reive already shores, and

$$
y \in \in^{\prime} \text { Thing }(T)^{7} \Leftrightarrow \operatorname{Prorable}_{T}(y) \Leftrightarrow J_{x} P_{\text {roof }}(x, y) \text {. }
$$

Def. Let σ be a finite signature. (all a σ-than T decidable if Thus (T) is computable.

Cor (tron Kleene's theorem), If a wapatatrle o-therog is complete, then it is devidoable.

Proof. We ouly need to show that Provable $T \leq \mathbb{N}$ is also Π_{1}^{0}, bat it is because tor each sentence φ, either $\operatorname{Provabl}_{T}\left({ }^{[} \varphi^{\top}\right)$ or $\operatorname{Provable} T\left({ }^{r} \rightarrow \varphi^{\top}\right)$, hece

$$
\text { Provabler }(\zeta) \Leftrightarrow \neg \operatorname{Provable}(\text { cole }(\neg) * y) .
$$

Therefore, the fellowing theorem of Church vastl, itreugthens and generalizes Gödel's incoupletienen Kiconem:

Charch's Uadecidability Theorem. Let σ le a fisite rigatature. Every σ-theory T that compntably integreeta PA is undecidable. E.g. PA, ZFC wre undecidable.

Göld's In onglitenes Theoren (Rosser's tocm). Eurg compatable σ-theory that coupatably interpeets $P A$ is inco-plete. E.g. $P A, P A \cup\left\{\neg \gamma_{P A}\right\}, Z F C$ ane in conplete.

Def. Let σ_{1}, σ_{2} be finite rignatures and T_{i} be a σ_{i}-heoom, $i=1,2$.
A function π : Formulas $\left(\sigma_{1}\right) \rightarrow$ Fermulas $\left(\sigma_{2}\right)$ is called an interpretation of T_{1} in T_{2} if for all $\varphi, \psi \in \operatorname{Scaten}{ }^{2}\left(\sigma_{1}\right)$,
(i) $T_{1} \vDash \varphi \Rightarrow T_{2} \vDash \varphi$
(ii) $T_{2} \vDash \pi(\neg \varphi) \leftrightarrow \neg \pi(\varphi)$
(iii) $T_{2} \vDash \pi(\varphi \wedge \psi) \leftrightarrow(\Pi(\varphi) \wedge \pi(\psi))$.

We say that T_{2} compatably intecprets T_{1} if theer is a computable icterpretation π : Formulas $\left(\sigma_{1}\right) \rightarrow$ Fermulas $\left(\sigma_{2}\right)$, i.e. The function
$\tilde{\pi}: \mathbb{N} \rightarrow \mathbb{N}$
$n \mapsto \begin{cases}r_{\pi} \pi(\varphi)^{\top} & \text { if } n={ }^{r} \varphi^{1} \text { for some } \varphi \in \text { Formulas }\left(r_{1}\right) \\ 0 & \text { o. } \omega .\end{cases}$
is coupatable.
Example. ZFC vomputably intecprets PA.

